Use CVXOPT from R
library(PythonInR)
##
## Initialize Python Version 2.7.9 (default, Mar 1 2015, 13:01:26)
## [GCC 4.9.2]
CVXOPT (Andersen et al., 2016) is a popular Python package for optimization, which is distributed under GPL-3. The following example shows how to solve an linear programming problem based on the example provided in the Rglpk (Theussl and Hornik, 2015) package.
## Simple linear program.
## maximize: 2 x_1 + 4 x_2 + 3 x_3
## subject to: 3 x_1 + 4 x_2 + 2 x_3 <= 60
## 2 x_1 + x_2 + 2 x_3 <= 40
## x_1 + 3 x_2 + 2 x_3 <= 80
## x_1, x_2, x_3 are non-negative real numbers
obj <- matrix(-c(2, 4, 3))
mat <- rbind(matrix(c(3, 2, 1, 4, 1, 3, 2, 2, 2), nrow = 3), -diag(3))
rhs <- matrix(c(60, 40, 80, 0, 0, 0))
There are various options how to solve this problem with PythonInR, the following will show two of them.
1. Import all the solvers from cvxopt
pyImport(import="solvers", from="cvxopt")
sol <- solvers$lp(th.cvxopt(obj), th.cvxopt(mat), th.cvxopt(rhs))
## pcost dcost gap pres dres k/t
## 0: -9.0519e+01 -3.2896e+02 1e+02 2e-01 2e+00 1e+00
## 1: -7.3854e+01 -1.3575e+02 3e+01 6e-02 7e-01 2e+00
## 2: -7.6566e+01 -7.8776e+01 8e-01 2e-03 2e-02 2e-01
## 3: -7.6666e+01 -7.6688e+01 8e-03 2e-05 3e-04 2e-03
## 4: -7.6667e+01 -7.6667e+01 8e-05 2e-07 3e-06 2e-05
## 5: -7.6667e+01 -7.6667e+01 8e-07 2e-09 3e-08 2e-07
## Optimal solution found.
sol$x
## [,1]
## [1,] 3.984107e-08
## [2,] 6.666667e+00
## [3,] 1.666667e+01
class(sol$x) ## an R matrix!
## [1] "matrix"
2. Use pyCall directly
pyExec("from cvxopt import solvers")
sol <- pyCall("solvers.lp", list(th.cvxopt(obj), th.cvxopt(mat), th.cvxopt(rhs)))
## pcost dcost gap pres dres k/t
## 0: -9.0519e+01 -3.2896e+02 1e+02 2e-01 2e+00 1e+00
## 1: -7.3854e+01 -1.3575e+02 3e+01 6e-02 7e-01 2e+00
## 2: -7.6566e+01 -7.8776e+01 8e-01 2e-03 2e-02 2e-01
## 3: -7.6666e+01 -7.6688e+01 8e-03 2e-05 3e-04 2e-03
## 4: -7.6667e+01 -7.6667e+01 8e-05 2e-07 3e-06 2e-05
## 5: -7.6667e+01 -7.6667e+01 8e-07 2e-09 3e-08 2e-07
## Optimal solution found.
sol$x
## [,1]
## [1,] 3.984107e-08
## [2,] 6.666667e+00
## [3,] 1.666667e+01
References
Martin S Andersen, Joachim Dahl, and Lieven Vandenberghe. Cvxopt: A python package for
convex optimization, version 1.1.8. Available at cvxopt. org, 2016. URL http://cvxopt.org/.
Stefan Theussl and Kurt Hornik. Rglpk: R/GNU Linear Programming Kit Interface, 2015. URL
https://CRAN.R-project.org/package=Rglpk. R package version 0.6-1
.